EXPERIMENTS
EXPERIMENTS
Yes
Page Content
The department, in collaboration with colleagues from UK Universities, is involved in many high energy physics (HEP) projects and running experiments located at different research institutes around the world.
NEUTRINO EXPERIMENTS
CategoryDescription1
Detectors designed to study neutrinos, particles that interact only via the weak force and gravity with other particles of matter. Neutrino detectors must be very large to detect a significant number of neutrinos and are often built underground, to isolate them from cosmic rays and other background radiation
HYPER-KAMIOKANDEHyper-Kamiokande is a next-generation neutrino-research project built to investigate a wider range neutrino properties with unprecedented precision, from the analysis of neutrino oscillations (CP violation) to further development of neutrino astronomy
T2KT2K (Tokai to Kamioka) is a long-baseline neutrino oscillation experiment. It investigates how muon neutrinos change from one flavour to another as they travel 295 km across Japan
DARK MATTER EXPERIMENTS
CategoryDescription2
Experiments designed to try to detect dark matter, a hypothetical form of matter thought to account for approximately 85% of the matter in the Universe which doesn't interact via the electromagnetic force and is therefore difficult to detect.
LUX/LZ DETECTORSNoble liquid detectors, especially those based on liquid argon and liquid xenon, are used in many frontier dark matter searches, such as LUX/LZ, providing excellent event reconstruction and discrimination capabilities
MIGDAL EXPERIMENTA new desktop fusion devices installed at ISIS, across the road from the RAL Particle Physics Department, could lead to a breakthrough in the direct detection of dark matter measuring the Migdal effect
CERN
CategoryDescription3
CERN runs the Large Hadron Collider (LHC), the largest particle accelerator in the world. Find out more about UK involvement with CERN here.
ATLASATLAS is a large general-purpose particle physics experiment. It is designed to study the fundamental constituents of matter, searching for new processes and particles that could change our understanding of energy and mass
CMSThe Compact Muon Solenoid (CMS) is a general-purpose detector at the Large Hadron Collider (LHC) with a physics programme ranging from studying the Standard Model to searching for extra dimensions and particles that could make up dark matter
LHCb LHCb is one of the four main experiments at the Large Hadron Collider at CERN with the purpose to study CP violation and investigate rare decays of beauty and charm quarks
FUTURE EXPERIMENTS
CategoryDescription4
DUNEDUNE is a liquid argon neutrino oscillation experiments located in the Sanford Underground Research Facility (SURF). It has a wide physics program, but one of the main aims is to investigate, if neutrinos and antineutrinos behave the same
ELECTRON-ION COLLIDER (EIC)The EIC will be a particle accelerator that collides electrons with protons and nuclei. The electron beam will reveal the arrangement of the quarks and gluons that make up the protons and neutrons of nuclei, allowing us to study the strong nuclear force
LhARA LhARA, the Laser-hybrid Accelerator for Radiobiological Applications, will harness the features of a laser accelerator with strong-focusing and rapid acceleration techniques to allow biology studies and cancer particle beam therapy to be performed
MUON COLLIDERA Muon Collider is a proposed particle accelerator facility in its conceptual design stage that collides muon beams for precision studies of the Standard Model and for direct searches of new physics
nuSTORMThe nuSTORM facility will provide νe and νµ beams from the decay of low-energy muons confined within a storage ring. The instrumentation, combined with the knowledge of muon decay, will make it possible to determine the neutrino flux at the %-level
PAST COLLABORATIONS
CategoryDescription5
BaBarThe BaBar high energy physics experiment was based at the Stanford Linear Accelerator Center (SLAC) in California USA.
CategoryDescription6